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Abstract

Extractionof contoursin binaryimagesis animportantele-
mentof objectrecognition. Thispaperdiscussesa more ef-
ficientapproach to contourrepresentationandgeneration.
Thisapproach definesa boundingpolygonasdefinedby its
verticesratherthanbyall enclosingpixels,which in itself is
an effectiverepresentation.Thesecorners canbeidentified
by convolution of the image with a 3x3 filter. Whenthese
cornersareorganizedbytheir connectingorientation,iden-
tified by the convolution, and type, insideor outside, con-
nectivitycharacteristicscan be articulated to highly con-
strain thetaskof sortingtheverticesinto orderedboundary
lists. Thesearch for thenext boundingpolygonvertex is re-
ducedto aonedimensionalminimumdistancesearch rather
than the standard, more intensivetwo dimensionalnearest
Euclideanneighborsearch.

1 Introduction

This paperdescribesa methodto decomposethe contour
extraction from binary imagesinto two stages. The first
stageis a parallelizableidentificationof a reducedset of
contourfeatures. The secondstageis combinatorialcon-
tourconstruction,thatis greatlyreducedin complexity from
simplecontourfollowing approaches.This new algorithm
cangreatly reducethe computationalburdenof the prob-
lemcomparedto previousalgorithmsfor contourextraction,
while at thesametimeallowing theparallelizationof theal-
gorithm.

Themostbasicalgorithmfor contourextractionusesan
automatonto traversethecontourpixel by pixel, or a more
complex versioninvolving multiple partial lists build dur-
ing a raster-scanof the image[1]. Although this approach
is intuitively clear, it doesnot takeadvantageof theparallel
natureof the task,nor of the usefulpropertiesof the con-
tours. Thechain-codingmethodof representationusesthe
observation that contourboundarypixels canbe extracted
usinga convolution-styleoperation[2], andcontourscanbe
generatedusingtheknowledgethat theseedgepixelsneed
to bearrangedsothey arein a list accordingto connectivity
[3]. Otherresultsexploretheconceptof usingcontourfea-

tureswith logicalcompletenessto representbi-level images
[4] [5], namingthesefeaturestransitionpoints, developed
for purposesof losslessencodingratherthanefficient con-
tourextraction.

The methodpresentedin this papergoesbeyondprevi-
ousresultsby distilling a setof high-level featuresthatnot
only representtheimagecontourswithout lossof informa-
tion, but havethefurtherpropertythatthelogicalextraction
of contoursis efficient throughinherentconstraintsof the
proposedfeatureset.

Section2 presentsthe detailsof a simpleexamplethat
illustratesthe feature-basedcontour generationconcepts.
Section3 fills in detailsthat extendthe conceptinto gen-
erality. Section4 discussesexpectedperformanceenhance-
mentswith this method.

2 Contour Generation Method Con-
cepts and Example

The contourextractionalgorithmis organizedinto two al-
gorithmsthat operatein sequence:featureextraction,and
contourgeneration.

2.1 Feature Extraction

Figure1 showsanexampleobjectfrom which contourfea-
turesare to be extracted,with featuresexplicitly labelled.
Thesefeaturesarethe cornerpixels in the object,both in-
terior andexterior. Thecornersaredistinctly orientated,so
therearefour typesof outsidecornersthatwill be referred
to asO1,O2,O3,O4,andtherearefour correspondinginside
corners,I1,I2,I3,I4. Thefigureshowsthemethod’s labeling
of outsideandinsidecornersin theobject,whichcanbeac-
complishedin a numberof ways.Themoststraightforward
is throughtheconvolutionovertheimagewith a3x3matrix
whoseresultis to producea numericcodefor eachof the8
typesof features.For example,convolvewith thematrix���� � �� ��� 	
���� ��� � �
���

��
(1)
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Figure1: Exampleimagewith contourfeatureslabelled
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Table1: List of Figure1’sextractedpointsby featuretype
FeatureType MemberPixel Coordinates
O1 (7,3) , (3,7)
O2 (10,3), (14,7)
O3 (14,10), (10,14)
O4 (3,10), (7,14)
I1 (7,7)
I2 (10,7)
I3 (10,10)
I4 (7,10)

which resultsin thenumericresults:� �����
��� � ����������� � 	�����	
��� � ��� ���! �"���
�
��� ! �#� ��$%�%� ! 	�� ����$�� ! �����
�%�
.

Thesefeaturesarethenextractedinto unorderedlists by
type.Thelistsof pointsextractedfrom theshapein Figure1
arecollectedin Table1. We presumethroughoutthat there
areno foregroundpixels on the edgeof the image,which
canbeassuredby paddingwith aborderof background.

Thenumberof contourfeaturesis a subsetof thewhole
contour, andwill belessthanor, strictly, equalto thenum-
ber of pixel edgesin the contour. In typical caseswhere
thereare horizontal and vertical runs in the contour, the
numberof extractedcontourfeatureswill be significantly
smallerthanthenumberof pixel edgesin thecontour.

Theseextractedlists representin themselves a highly
compressedcompleteversionof the original image. They
mayalsobeusedto efficiently generatethecontours,asil-
lustratedin thenext section.

2.2 Contour Generation

Given the contourfeaturelists asdefinedabove, the algo-
rithm for the contourgenerationis a highly and uniquely

Table2: Constraintsfor contourgenerationfrom the con-
tour features

CurrentContour Next Contour Dimensionand
FeatureType FeatureType Directionof

Next Point
O1,I2 O2,I1 horizontal,right
O2,I3 O3,I2 vertical,down
O3,I4 O4,I3 horizontal,left
O4,I1 O1,I4 vertical,up

constrained combinationof theselists. Oncethe lists are
generatedproperly, the algorithmis straightforward: Take
thestartingpoint for serialcontourgenerationto bethefirst
elementof theO1 list, althoughthischoiceis arbitrary. The
next point on the list, giventhatwe arecurrentlyon anO1
point,mustcomefrom eithertheO2or theI1 lists. Further,
the next point will be the closestpoint on theselists in a
specificdirectionalongonedimension:from an O1 point,
thenext pointonthecontourmustbeto theright, andit will
beon thesamehorizontalline. 1

The searchthroughthe featurelists for the neighboring
pointon thecontouris thusconstrainedto 2 of the8 listsof
featurepoints. For eachnext cornersearch,the algorithm
hastwo steps:find exact 1-D match alongthe relevantdi-
mension,thenfind nearest1-D distancealongthe remain-
ing dimension. This greatly constrainsthe searchfor the
next contourfeatureon the contour, in comparisonto the
generalx-ysearchproblemto locatetheclosestpixel in two
dimensions.Table2 shows thecompletesetof constraints.

Thesimplestalgorithmfor producingasequentiallist of
contourfeaturesis to successively find the closestcontour
featureaccordingto the above constraints,removing that
featurefrom the list asit is generated.This algorithmcan
obviously be parallelized,given the observation thatevery
contourstageis independentof the last. Contoursegments
canbebuilt independently, andthesegmentsconstructedit-
eratively, joining contourcornerfeaturesto make contour
line segments,joining theseto make contourcornerseg-
ments(two line segmentsat right angles),joining theseto
make contour4-line segmentsandsoon. Eventuallythese
contoursegmentswill be joined to make a completecon-
tour.

3 General Contour Extraction

The previous sectionchosean illustrative examplefor ex-
planatorypurposes,but it doesnot coverall of thepossible
configurationsleadingto inner andoutercorners.For ex-
ample,therearethe issuesof directly neighboringcorners

1This descriptionpresumesoneof two symmetricsetsof constraints,
namelyclockwiseexterior bordergeneration.
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Figure2: Exampleof valuesin diagonalpixel contact
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andcornersin diagonalcontact. This sectionwill present
two alternativeapproachesto makingthepresentedconcept
general.Thefirst approach,the doubleresolutionmethod,
enhancesthemethodonly slightly to dealwith pixel corner
contact,but hasthedisadvantageof doublingthecomputa-
tion of the imageconvolution/scanningstage.The second
approach,thedirectcornerextractionmethod,doesnot re-
quire changeof the input image,but introducescomplex-
ity in the featurelabelingandextractionstage. Although
thesetwo approachesareequivalentin theabstractthe lat-
ter may be preferred,becausethe featureextractionstage,
which will usuallydominatethe total computationtime, is
relatively smaller.

3.1 Double Resolution Method

The simplestcompletemethodis to doublethe resolution
of theinput image,splittingeachpixel in theoriginal image
into four pixels in the new image. This eliminatesneigh-
boringpixel featureswhich causeadditionalcomplexity in
featuretypesandcontourbuilding, by whatcanbeseenas
addingbuffer pixels betweeneachfeature. The process,
from featureextractionthroughcontourgeneration,canbe
executedwith only minoradditionsto thefeaturevaluelists
demonstratedabove.

We will assumediagonalcontact,i.e. pixelsjoinedonly
at a singlecornerpoint, doesnot representconnectivity of
the foregroundobject,andconverselydoesrepresentcon-
nectivity of the background.The converseformulation is
alsopossible.

To completethelist of theaboveconvolutionfilter’spro-
ducedvaluesof interest,we mustalsotake into accountthe
additionalvaluesgeneratedby diagonalcontact.Examples
areshown in Figure2. Thefour possiblediagonalselections

Table3: Correspondencebetweenpixel valueandfeature
typefor thedoubleresolutionmethod

Pixel Value FeatureType
27,283 O1
54,118 O2
432,433 O3
216,220 O4
255 I1
447 I2
510 I3
507 I4

Figure3: Examplesof single-pixel features
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add4 new outsidecornervalues,resultingin thecomplete
featurevaluelist shown in Table3.

Thealgorithmusingthesevaluesandtheconstraintsde-
scribedin theexamplesectionabovearesufficientto extract
contoursfrom any shape.Thenext sectiondiscussesanal-
ternative algorithmto completecontoursgenerallywithout
changeof theoriginal image.

3.2 Direct Extraction of Pixel Corners

Directly moving to the modeof pixel cornersduring the
featureextractionphaseis effectively equivalentto thedou-
ble resolutionapproach,althoughthecomplexity is shifted
from the increasedcomputationin convolution, i.e., four
times the numberof pixels, to the numberof featuresre-
quired,tradingoff complexity for computation.

3.2.1 Single Pixel Features

The feature extraction processhere must incorporatea
much longer list of possibilities. For example, Figure 3
shows new valuesassociatedwith single-pixel sized fea-
tures. A significantchangehereis that the pixels of, e.g.,
type23and191in theexample,causeadditionsto two lists,
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sincethey have morethanonesalientfeature,for example
type 23 representstwo outsidecorners,and type 191 two
insidecorners.

3.2.2 Closure Asumptions

There are two possibleclosure assumptions,mentioned
briefly above. Onepossibility is that pixels touchingat a
singlecornerrepresentcontactof theforegroundandsepa-
rationof thebackground.This analysiswill take theoppo-
siteassumption,that foregroundpixelstouchingat a single
cornerarenot connected.This choiceis arbitrary, andthe
methodcanbeimplementedundereitheralternative.

3.2.3 Sub-pixel Corner Coordinates

It is necessaryto take measuresto ensurecornersfrom dif-
ferentpixelsdo not have the samerecordedlocation. The
cornersfrom pixel type 191 (seeFigure3) cannotboth be
listedasthepixel centerwithout introducingcombinatorial
ambiguity. If thepixel cornersaremovedto 1/2nativepixel
grid spacing(at & $�' � of thepixel coordinates),cornerposi-
tionsfrom pixelstouchingatasinglepointwill beidentical,
alsocausingambiguityin thecombinatorialstage.Theso-
lution is to take the cornersof a pixel to be insidea pixel,
sothatfor examplepixel type23correspondsto aI1 feature
at (-0.25,-0.25)to thecurrentpixel center, andanI2 feature
at (+0.25,-0.25)to the currentpixel center. A remapping
could insteadmaintaininteger valuesby simply multiply-
ing the fractionalvalueby four, avoiding the overheadof
floatingpoint computation.

3.2.4 Feature Generation

It is in thisoperationthattheoverallcomplexity is increased
from the introductoryexample. Insteadof onefeatureper
pixel, we now have a maximumof 4 featuresper pixel, in
thecasesof a singlepixel (four outsidecorners)or a single
pixel sizedcross(four insidecorners).It is expectedthatthe
averagenumberof featurespercontourpixel will still allow
for significant complexity savings versusmethodswhich
maintainall exterior edgepixels, sinceall horizontaland
vertical runsareinherentlyeliminated. This savings com-
poundstheinherentsavingsof theconstrainedcombination.

The exhaustive list of pixel valuesand their associated
listsareshown in Table4. This list includesrotationalsym-
metriesexpectedfrom thesymmetricgrid. Theconvolution
algorithmfor featureextractionof generatingthesevalues
thenkeying to list membershipcanbe reducedto a setof
moreefficientbooleanoperationsfor efficiency.

Table4: Correspondencebetweenpixel valueandfeature
typefor thedirectmethod

Pixel Value FeatureType
27,31,91,95,283,287,347,351 O1
54,55,118,119,310,311,374,375 O2
432,433,436,437,496,497,500,501 O3
216,217,220,221,472,473,476,477 O4
182,183,246,247,248,249,252,253,255 I1
155,159,411,415,440,441,444,445,447 I2
62,126,218,222,318,382,474,478,510 I3
59,123,315,379,434,435,498,499,507 I4
18,19,22,23,82,83,86,87,274,275,
278,279,338,339,342,343 O1,O2
48,49,52,53,112,113,116,117,304,
305,308,309,368,369,372,373 O2,O3
144,145,148,149,208,209,212,213,
400,401,404,405,464,465,468,469 O3,O4
24,25,28,29,88,89,92,93,280,281,
284,285,344,345,348,349 O4,O1
184,185,188,189,191 I1,I2
154,158,410,414,446 I2,I3
58,122,314,378,506 I3,I4
178,179,242,243,251 I4,I1
254 I1,I3
443 I2,I4
26,30,90,94,282,286,346,350 O1,I3
50,51,114,115,306,307,370,371 O2,I4
176,177,180,181,240,241,244,245 O3,I1
152,153,156,157,408,409,412,413 O4,I2
190 I1,I2,I3
442 I2,I3,I4
187 I1,I2,I4
250 I1,I3,I4
16,17,20,21,80,81,84,85,272,273,
276,277,336,337,340,341 O1,O2,O3,O4
186 I1,I2,I3,I4
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3.2.5 Comments on Postprocessing Operations

Postprocessingcan determinepropertiesof interest,such
asnestingof contours.Extendingthis to a multi-level im-
age,regionscanbe annotatedwith a region type that they
enclose. Also, it may be of interestto modify the con-
tours from the pixel boundaries,which lie on the grid of
the integers & $�' �
� in the algorithm definedabove. Arbi-
trary remappingof thesevaluescanbeperformedeasily, by
maintainingand using of the corner type. Descriptionof
thecontoursmaynot requirethedistinctionbetweeninside
andoutsidecornersis not necessary, only an indicationof
the direction from the centerof the pixel to the corneris
relevant.

This postprocessingcan also remapthe contour from
thequarter- to thehalf-integergrid, therebypreservingex-
pectednotionsof areaenclosedof onepixel equalsoneunit,
or moving the contourbackto integer pixel centervalues,
therebypreservingpixel locations.Thenatureof thepost-
processingnaturallydependson the specificnatureof fur-
theruseto bemadeof thecontour.

3.3 Extracting Multiple Contours

If the lists are not empty when the contour is completed,
thereare additionalcontoursin the image. The methods
discussedapplyequivalentlyto interioror exteriorcontours.
Notethatif thereareremainingcontours,therewill always
beeitheranoutsidecorneror its correspondinginsidecor-
ner, so it sufficesto checkfor whetherthesecorresponding
lists (e.g.O1 andI1) haveentries.

4 Complexity Comparison for Per-
formance Evaluation

Performanceassessmentis veryproblemdependent,soper-
formancecomparisonwill betreatedapartfrom specificim-
plementationsor imagesfirst, with someexamplessupplied
later. In imageoperations,asymptoticresultsusingorder
of magnitudearenot indicative of perfomance;thenumber
of operationsarein reality boundedby real imagesize,and
sothemagnitudeof themultiplierscanbemoresignificant
thanthestrict orderof complexity of theoperations.In or-
der to abstractperformanceof this new methodcompared
to othermethods,wewill considerfour basicoperationsfor
contourextractionalgorithms:

1. Imageconvolution, for extractionof boundarypixels
or cornerfeatures,constant(�)+*-,�.0/ ;

2. 2-D searchfor nearestneighbor, *213.4/3576
8 1 / ;
3. 1-D searchfor nearestneighbor, *293.4/3576
8:/ ;
4. local imagesearchfor next neighborboundarypixel,*<;�.0/ .

where / is the numberof boundaryfeatures(all contour
edgesor cornerfeatures,asappropriate).Themethodswe
will considerare

(A) automatoncontourfollowing, complexity = ; , where/
is numberof all borderpixels;

(B) contour constructionfrom extraction of all borders,
complexity = , )>= 1 where/ is thenumberof all border
pixels;

(C) the describedmethod of contour constructionfrom
corner features,complexity = , )?= 9 where / is the
numberof cornerfeatures.

where=A@ is thetimefor operationB above.Typically, theor-
dermultiplier for operation1, * , will beextremelysmall,
simply thetime to readout thefeaturesof interest.The *21
and *29 arethe mostsignificant,they aresearchesof lists,
andcanbe expectedto be comparable.* ; (indexing into
image)canbe expectedto be larger than *21 and *29 (ac-
cessinga list), but in thesameorderof magnitude.

Comparingthenew methodC to methodA, we canob-
serve thereis addeda constantanda very small termscal-
ing with thenumberof featuresaddedfor operation1, but
asdescribed*-, is verysmallsothiscomponentis notcon-
sideredto be significantfor possibleimagesizes,and the
constant( correspondingto convolutionwill dominatethis
term. Besidesthis approximatelyconstantaddedterm, the
significantpixel-dependenttermsare

�DC /FEHG comparedto�DC /FI�5J6
8:/FIKG , wherewe mustnow considerthe difference
betweenthe / E , the numberof borderpixels, and /FI , the
numberof cornerfeaturepixels.

ComparingmethdCto methodB, weobserveaverysim-
ilar componentfor the convolution term, althoughwe are
dealingwith /FE for methodB and / I for methodC. There
is a significantdifferencein the constructionphase,both
because/ E is greaterthan /FI , and becauseof the greater
numberof operationsfor 2-D search.Thefinal comparison
is
�DC / E 576
8 1 / E G for methodB and

�DC /FI�5J6
8:/FIKG for method
C.

Thesecomparisonscritically comedown to the magni-
tudeof the ratio L
ML
N0OQP $��R�RS . As this ratio getssmaller, the
advantageof thenew methodgains.Two imagesareshown
in Figs. 4 and 5. The former is a personwalking, sege-
mentedbasedon motion. Theratio L
ML
N is 0.53. Thesecond
is a randomimage,intendedto show aworst-casescenario,
Theratio is 0.78.This indicatesa favorablepositionfor the
new methodsincethis ratio is typically significantly less
thanone.

Regarding the possibleparallel implementationof the
algorithms,methodA is generallynot parallelizable,and
methodsB andC areparallelizablein a similar style. The
advantagesof our proposedmethodremainintact.
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Figure 4: Exampleof contour featureratio, motion seg-
mentedpersonwalking binary image.Theratio of contour
cornerfeaturesto all edgefeaturesis 0.53.
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Figure5: Exampleof contourfeatureratio, randomimage
build underthedriteriaof randomlyaddingpixelsalongthe
boundaryof singlestartingpoint. Undertheclosureassum-
tions chosen,this shapehasthreecontours,two of which
areinterior. Theratio of contourcornerfeaturesto all edge
featuresis 0.78.
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5 Conclusions

A new algorithm for efficiently extracting contourswas
presented.The two stages,corner feature extraction and
contourgeneration, tradeoff complexity with computation.
Thecornerfeatureextractionis aninherentlyhighly parallel
operation,generatingcornerfeaturesfrom an examination
of the

	 . 	 neighborhoodcenteredoneachpixel, resulting
in a setof cornerpointsannotatedwith featuretypes. The
contourgenerationfromthisrepresentationof theobjectis a
combinatorialoptimizationproblem,with a numberof new
constraintsintroducedwhich greatly constrainthe search,
in particularavoiding assessmentof two-dimensionaldis-
tance.Althoughparallelalgorithmimplementationhasnot
beenexploredin this paper, this combinatorialproblemap-
pearsto bedecomposable.

This methodcanpotentiallybe extendedfrom horizon-
tal/verticalconnectivity to directconnectivity overdiagonal
runs. However, the constraintsthateasethe combinatorial
stageof thepresentedalgorithm,specificallythe reduction
in searchdimensionfrom two to one, would be replaced
with more challenging T>U � T�V rules. It is likely that
postprocessingthecontourto recover diagonals,if desired,
is apreferableapproach.

References

[1] R.C.Gonzales, R.E.Woods, Digital Image Processing,
Addison-Wesley, 1992.

[2] H. Freeman,“On theencodingof arbitrarygeometricconfig-
urations”, IRE Trans.Electron.Comput.,col.C-10,pp.260-
268,June1961.

[3] B.R.Schlei,L.Prasad,“A parallelalgorithmfor dilatedcon-
tour extraction from bilevel images”,Los Alamos National
LaboratoryreportLA-UR-00-0309.

[4] A.J. Pinho,“A methodfor encodingregion boundariesbased
on transitionpoints”, ImageandVisionComputing16,1998,
pp.213-218.

[5] A.J. Pinho, “A JBIG-BasedApproach to the Encodingof
ContourMaps”, IEEE Transactionson ImageProcessing”,
vol.9,no.5,May 2000,pp.936-941.

6


	Efficient Feature-Based Contour Extraction
	Abstract
	1 Introduction
	2 Contour Generation Method Concepts and Example
	2.1 Feature Extraction
	2.2 Contour Generation

	3 General Contour Extraction
	3.1 Double Resolution Method
	3.2 Direct Extraction of Pixel Corners
	3.2.1 Single Pixel Features
	3.2.2 Closure Asumptions
	3.2.3 Sub-pixel Corner Coordinates
	3.2.4 Feature Generation
	3.2.5 Comments on Postprocessing Operations

	3.3 Extracting Multiple Contours

	4 Complexity Comparison for Performance Evaluation
	5 Conclusions
	References

		2002-03-22T13:52:17-0700
	Viola Vigil




